Perfectly-Secure MPC with Linear Communication Complexity
نویسندگان
چکیده
Secure multi-party computation (MPC) allows a set of n players to securely compute an agreed function, even when up to t players are under the control of an adversary. Known perfectly secure MPC protocols require communication of at least Ω(n) field elements per multiplication, whereas cryptographic or unconditional security is possible with communication linear in the number of players. We present a perfectly secure MPC protocol communicating O(n) field elements per multiplication. Our protocol provides perfect security against an active, adaptive adversary corrupting t < n/3 players, which is optimal. Thus our protocol improves the security of the most efficient information-theoretically secure protocol at no extra costs, respectively improves the efficiency of perfectly secure MPC protocols by a factor of Ω(n). To achieve this, we introduce a novel technique – constructing detectable protocols with the help of so-called hyper-invertible matrices, which we believe to be of independent interest. Hyper-invertible matrices allow (among other things) to perform efficient correctness checks of many instances in parallel, which was until now possible only if error-probability was allowed.
منابع مشابه
Communication Efficient Perfectly Secure VSS and MPC in Asynchronous Networks with Optimal Resilience
Verifiable Secret Sharing (VSS) is a fundamental primitive used in many distributed cryptographic tasks, such as Multiparty Computation (MPC) and Byzantine Agreement (BA). It is a two phase (sharing, reconstruction) protocol. The VSS and MPC protocols are carried out among n parties, where t out of n parties can be under the influence of a Byzantine (active) adversary, having unbounded computin...
متن کاملLinear Overhead Optimally-Resilient Robust MPC Using Preprocessing
We present a new technique for robust secret reconstruction with O(n) communication complexity. By applying this technique, we achieve O(n) communication complexity per multiplication for a wide class of robust practical Multi-Party Computation (MPC) protocols. In particular our technique applies to robust threshold computationally secure protocols in the case of t < n/2 in the pre-processing m...
متن کاملSimple and Efficient Perfectly-Secure Asynchronous MPC
Secure multi-party computation (MPC) allows a set of n players to securely compute an agreed function of their inputs, even when up to t players are under the control of an adversary. Known asynchronous MPC protocols require communication of at least Ω(n) (with cryptographic security), respectively Ω(n) (with information-theoretic security, but with error probability and non-optimal resilience)...
متن کاملNear-Linear Unconditionally-Secure Multiparty Computation with a Dishonest Minority
In the setting of unconditionally-secure MPC, where dishonest players are unbounded and no cryptographic assumptions are used, it was known since the 1980’s that an honest majority of players is both necessary and sufficient to achieve privacy and correctness, assuming secure point-to-point and broadcast channels. The main open question that was left is to establish the exact communication comp...
متن کاملLinear Overhead Robust MPC with Honest Majority Using Preprocessing
We present a technique to achieve O(n) communication complexity per multiplication for a wide class of robust practical MPC protocols. Previously such a communication complexity was only known in the case of non-robust protocols in the full threshold, dishonest majority setting. In particular our technique applies to robust threshold computationally secure protocols in the case of t < n/2 in th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008